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RE
CT

ED
PRWhat is the role of the Fusiform Face Area (FFA)? Is it specific to face processing, or is it a

visual expertise area? The expertise hypothesis is appealing due to a number of studies
showing that the FFA is activated by pictures of objects within the subject's domain of
expertise (e.g., cars for car experts, birds for birders, etc.), and that activation of the FFA
increases as new expertise is acquired in the lab. However, it is incumbent upon the
proponents of the expertise hypothesis to explain how it is that an area that is initially
specialized for faces becomes recruited for new classes of stimuli. We dub this the “visual
expertise mystery.” One suggested answer to this mystery is that the FFA is used simply
because it is a fine discrimination area, but this account has historically lacked amechanism
describing exactly how the FFA would be recruited for novel domains of expertise. In this
study, we show that a neurocomputational model trained to perform subordinate-level
discriminationwithin a visually homogeneous class develops transformations that magnify
differences between similar objects, in marked contrast to networks trained to simply
categorize the objects. This magnification generalizes to novel classes, leading to faster
learning of new discriminations. We suggest this is why the FFA is recruited for new
expertise. The model predicts that individual FFA neurons will have highly variable
responses to stimuli within expertise domains.

© 2007 Elsevier B.V. All rights reserved.
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Fusiform face area
Face processing
Visual expertise
Computational modeling
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UN
CO1. Introduction

There has been a great deal of progress in understanding how
complex objects, in particular, human faces, are processed by
the cortex.At the same time, there is a great deal of controversy
about the role of various cortical areas, especially the Fusiform
Face Area (FFA) (Kanwisher et al., 1997; Kanwisher, 2000; Tarr
and Gauthier, 2000). Is the FFA a “module,” specific to the
domain of faces, or is it instead specific to the process of fine
level discrimination? Several fMRI studies showed high acti-
4, UCSD, La Jolla, CA 9209
trell).

er B.V. All rights reserved

et al., Why is the fusif
in Res. (2007), doi:10.10
vation in the FFA only to face stimuli and not other objects
(Kanwisher et al., 1997; Kanwisher, 2000). Furthermore, studies
involving patients with associative prosopagnosia, the inabil-
ity to identify individual faces (Farah et al., 1995), and visual
object agnosia, the inability to recognize non-face objects
(Moscovitch et al., 1997), seem to indicate a clear double
dissociation between face and object processing. Prosopagno-
sic patients had lesions encompassing either right hemisphere
or bilateral FFA, while object agnosic patients' lesions did not
(De Renzi et al., 1994).
3-0404, USA. Fax: +1 858 534 7029.
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Gauthier et al. (1997, 1999a) have challenged the notion of
the face specificity of the FFA by pointing out that the earlier
studies failed to equate the level of experience subjects had
with non-face objects with the level of experience they had
with faces. Gauthier et al. (2000) showed that the FFA was
activated when car and bird experts were shown pictures of
the animals in their area of expertise. Furthermore, they
illustrated that, if properly trained, individuals can develop
expertise on novel, non-face objects (e.g., “Greebles”), and
subsequently show increased FFA activation to them (Gau-
thier and Tarr, 1997; Gauthier et al., 1999b). Crucially, the
same 2 or 3 voxels that are most active for faces also show the
largest increase in activity over the course of expertise
training on non-face stimuli, suggesting that the FFA is
recruited as subjects learn to visually discriminate novel
homogeneous stimuli, and is automatically engaged when
the subject is an expert (Tarr and Gauthier, 2000). Hence the
theory is that the FFA is a fine level discrimination area (this is
still controversial - see Grill-Spector et al. (2004) and Rhodes
et al. (2004) for competing evidence). However, the idea that
the FFA is a fine level discrimination area still does not
answer the question of what mechanism would explain how
an area that presumably starts life as a face processing region
is recruited for these other types of stimuli. This is a job for
modeling.

Before addressing this question, it is important to define the
notion of an “expert.”Weuse Gauthier's operational definition
UN
CO

RR
EC

Fig. 1 – Network architecture. Input images are 64×64 grayscale
filters (wavelets) at 8 different orientations (0, π/8, π/4, 3π/8, π/2
(see Farah et al. (1995) for details). We keep the magnitudes of th
resulting in a 2560-dimensional representation of the image, wh
are z-scored (shifted and scaled so they have 0 mean and unit st
before applying PCA. The top 40 components, again z-scored, we
hidden layermodels the representations used for basic level categ
For basic networks, classification at the output nodes was at the
during pre-training and at the subordinate level (10 additional o
networks, one category (cars, cups, books, faces) was learned at
pre-training. Following pre-training, Greebles were learned at th

Please cite this article as: Tong, M.H., et al., Why is the fusif
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of the term: experts are as fast to verify that a picture of an
object is a particular individual (subordinate level) as they are
to verify their categorymembership (basic level). For example,
a bird expertwould be as fast and as accurate at verifying that a
picture of a bird is an “Indigo Bunting” as at identifying it as a
“bird.” On the other hand, a novice will show the fastest re-
action time at the basic level, and is slower at both subordinate
and superordinate level (Tanaka and Taylor, 1991). The basic
level was first identified by Rosch as the level at which objects
tend to share the same shape and function, and tend to
correspond to the first word we use to describe an object (a
picture of a chair is labeled “chair” rather than “furniture” of
“office chair”). When training a subject in a novel category, the
downward shift in reaction times in these two tasks is taken as
evidence of expertise.

Previously, we have demonstrated that developmentally
appropriate conditions (low spatial frequency input and
learning subordinate/individual level classification) are suffi-
cient for our neurocomputational model to specialize for faces
(Dailey and Cottrell, 1999) Here, we investigatewhat properties
the FFA might possess that would result in its recruitment for
non-face, subordinate level discrimination tasks.

We compare the properties of two kinds of cortical models:
“expert networks” trained to make subordinate level categor-
izations (“Is this Bob, Carol, Ted or Alice?”, top path of Fig. 1),
and “basic networks” trained tomake category level classifica-
tions (“Is this a face, cup, can, or book?”, bottom path of Fig. 1)
TE
D

images. The first layer of processing consists of Gabor
, 5π/8, 3π/4, and 7π/8) and 5 different scales
ese filters (i.e., 40 numbers) from an 8×8 grid of 64 points,
ich we term the perceptual level. The filter magnitudes
andard deviation) on an individual basis across the data set
re then used as input to a one hidden layer network. The
orization or fine-level discrimination, depending on the task.
basic level (i.e., four outputs, one per category) for all stimuli
utputs) for Greebles following pre-training. For expert
the subordinate level and all other at the basic level during
e subordinate level.

orm face area recruited for novel categories of expertise?
16/j.brainres.2007.06.079
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Fig. 2 – Example network stimuli9 64×64, 8-bit, grayscale photos of books, cans, cups, faces, and Greebles used in the network
simulations. Greebles are a created class of objects often used in studying expertise due to their novelty to subjects5. Three
different images of each individual were used in training. Faces of the same person varied in expression, while images of
other individual objects varied slightly in placement of the object in the image.

1 Greebles are a fictitious category of objects created by Isabel
Gauthier for her Ph.D. thesis. They were constructed to have some
properties similar to human categories—they have family resem-
blances, they have a “gender,” and are symmetric. They have
gender labels, family labels, and individual names. Two examples
are shown in the last column of Fig. 2.
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on the stimuli shown in Fig. 2. We then show that expert
networks learn individuation of novel categories faster than
basic networks. Thus, if cortical networks compete to solve
tasks, this learning advantage suggests that the FFA, as a fine
level discrimination network, would be recruited to perform
novel fine-level discrimination tasks over a network that has
no previous experience with such processing. An advantage of
computational modeling is that the “first expertise” domain of
the networks needs not be faces: our results do not depend on
the order in which domains are learned, suggesting there is
nothing special about faces.

Similar to previous work (Dailey and Cottrell, 1999; Dailey
et al., 2002; Palmeri and Gauthier, 2004; Reisenhuber and
Poggio, 1999), the model uses layers of processing from low
level features to high level categories: (1) a Gabor filter layer
models cortical responses of early visual cortex (Daugman,
1985); (2) a principal components layer (learnable via Hebbian
methods; Sanger, 1989) models object representations as
correlations between Gabor filter responses; (3) a hidden
layermodels a task-specific feature representation (represent-
ing subordinate or basic level processing, depending on the
task), trained by back-propagation (Rumelhart et al., 1986); and
(4) a categorization layer that controls the level of discrimina-
tion between the stimuli, either subordinate or basic level.
Minor variations of this model have accounted for a variety of
behavioral face processing data (Cottrell et al., 2002; Dailey and
Cottrell, 1999; Dailey et al., 2002). By analyzing the hidden
layers of the two types of networks, we found that expert
networks spread out the representations of similar objects in
order to distinguish them. Conversely, basic networks repre-
sent invariances among category members, and hence com-
press them into a small region of representational space. The
transformation performed by expert networks (i.e.,magnifying
differences) generalizes to new categories, leading to faster
learning. The simulations predict that FFA neurons will have
highly variable responses across members of an expert
category.
Please cite this article as: Tong, M.H., et al., Why is the fusif
A neurocomputational investigation, Brain Res. (2007), doi:10.10
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PR2. Results and discussion

2.1. Network training

Training of the networks occurred in two phases. During the
pre-training phase, two kinds of networks were trained. Basic-
level networks were trained to differentiate a set of stimuli
(cups, cans, books, and faces) (see Fig. 2) at the category level.
Expert-level networks also had to perform this basic-level
categorization, but were also required to differentiate one of
these classes at the subordinate level. Hence there were four
kinds of expert networks—“cup experts,” “can experts,” “book
experts,” and “face experts.” During the second phase of
training, a novel stimulus type, “Greebles1,” was introduced
and both basic and expert networks were trained to identify
Greebles and to recognize individual Greebles. Training was
also continued on the prior tasks. This reflects the fact that
exposure to the new area of expertise is added to the daily
routine of interacting with the world. This is also true in
human experiments in creating experts in the lab, where
training typically occurs for an hour a day over one to two
weeks (Gauthier and Tarr, 1997). Not performing this inter-
leaving would be equivalent to taking a human subject “out of
the world,” and allowing them only visual exposure to the
objects of expertise, a situation that seemsunrealistic at best. If
ourmodel was not trained in such an interleaved fashion, face
expertise would decay over the course of training. This may
seem like an unrealistic prediction of themodel. However, it is
worth noting that it has recently been reported that, for one
class of experts, this prediction would seem to hold up. Kung
orm face area recruited for novel categories of expertise?
16/j.brainres.2007.06.079
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et al. (2007) examined bird experts' FFA activity with respect to
their degree of expertise. Expertise was measured by d' on a
same/different species test with bird images. As might be
expected from previous studies of visual expertise, they found
that with increasing levels of bird expertise, the FFA wasmore
activated by bird images. However, they also found that with
increasing levels of bird expertise, the FFA was less activated by
faces. This finding suggests that the FFA is plastic in its
responsiveness depending on the kind of expertise that is
most prominent in a particular subject. Our model would
exhibit similar differences if it was trainedmore frequently on
Greebles than on its original domain of expertise.

Basic networks learned their pre-training task the fastest
and maintained the lowest error (RMSE, see Methods) until
between 1280 and 5120 training epochs (one pass through the
training set), when the various expert networks caughtup (can,
cup, book, and face experts in that order) (see Fig. 3).
Conversely, the basic-level networks took by far the longest
to learn the novel task (Fig. 4), obtaining no significant benefit
from additional pre-training cycles. A linear trend analysis
shows that all of the expert networks (but not the basic
networks) learned the novel task faster if theywere givenmore
pre-training on their initial expert task, with faces benefiting
the most from additional pre-training (an F-test for non-zero
slope with n=100 for each test (10 networks at 10 time steps)
yields p=0.2962 for basic networks and p<0.0001 for expert
networks). Thus, for the networks learning a harder pre-
training task (expert-level classification), more pre-training
lead to faster learning on the secondary, expert-level task. In
this study, we alternately used faces, cups, cans, and books as
the primary expertise task, and Greebles as the novel
(secondary) expertise task. However, we have replicated
these results consistently with a variety of primary and
secondary expertise tasks. For example, a network with prior
UN
CO

RR
EC

Fig. 3 – Root Mean Squared Error (RMSE) on the training set over
categorization task is the easiest.

Please cite this article as: Tong, M.H., et al., Why is the fusif
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expertise with books learns expertise with faces faster than a
network with only basic level experience with books.

The networks learn both the primary and secondary tasks,
but are they experts?Wemodel human subjects' reaction time
as the uncertainty of the maximally activated output (see
Methods). Fig. 5b shows the entry-level shift for Greebles in a
network that was trained to be a face expert during pre-
training (note that subordinate face model reaction times are
already as low as basic level face reaction time). This curve is
quite similar to the entry-level shift shownby a human subject
trained in our lab to individuate Greebles (Fig. 5a). Therefore,
according to the criterion used for human subjects, the
networks have attained expert status.

2.2. Internal representations

We hypothesized that the learning advantage for expert
networks was due to the larger amount of information that
must be carried by the internal representations formed during
training.We can visualize the representations by performing a
Principal Components Analysis (PCA) of the hidden unit
activations over the data and then project the data onto a
two-dimensional subspace. We perform this over the training
time of the network in order to see how the representations
develop. This is shown in Fig. 6, in which the second and third
principal components of the hidden unit activation to each
input pattern are plotted against one another (the first PC just
captures the magnitudes of the weights growing over time).
Note the larger separation for the expert network on both
subordinate and basic level categories as pre-training pro-
gresses. On the other hand, while the basic network separates
the classes, it also compresses each class into a small blob in
the space. Furthermore, we can project the (so far untrained)
Greeble patterns into the same space, and the plot shows that
training time for the primary task. The basic level

orm face area recruited for novel categories of expertise?
16/j.brainres.2007.06.079
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these are also more separated by the expert network—the
spread of representations of homogeneous classes generalizes
to anovel category. This is the fundamental reason for speeded
learningof Greebles: it is easier to “pick off” eachGreeble if they
are in different locations in feature space to begin with.

A neurophysiological correlate to the above results is that
the spread of representations will correspond to increased
variability of single-unit responses across a homogeneous
category in an expert network, and hence, in the FFA. Referring
to the PCA visualization in Fig. 6, the two dimensions in that
graph correspond to two “virtual unit'” responses to the sti-
muli. Since the points are more spread out in expert networks,
thismeans that these units have higher variability of response
across a class. We can visualize this in the single unit re-
cordings shown in Fig. 7, which shows the actual activation
levels of several hidden units in basic and expert networks to
individual stimuli. As is clear from the figure, there is greater
variability across a single class of stimuli in an expert network
versus a basic network, and the greatest variability is for the
class being discriminated. An analysis of variancewith 5 levels
of category (Expert networks shown stimuli from their domain
of expertise (called Expert), Expert networks shown stimuli
outside their domain of expertise (but trained at the basic-
level, called Expert-basic), Expert networks shown the un-
trained Greeble stimuli (Expert-Greeble), Basic networks
shown stimuli from the trained basic set (Basic), and Basic
networks shown theuntrainedGreeble stimuli (Basic-Greeble))
and 11 levels of training epoch (0, 10, 20, 40, 80, 160, 320, 640,
1280, 2560, 5120) was performed to determine effects. For this
ANOVA, the mean variance over the relevant stimuli was the
observation; thus for the expert networks 40 observations of
each mean variance were available (4 types of networks, 10
runs of each), while for basic networks 10 observations were
Please cite this article as: Tong, M.H., et al., Why is the fusif
A neurocomputational investigation, Brain Res. (2007), doi:10.10
TE
Dused; this yields a total of 1540 points in theANOVA. Therewas

a main effect of category [F(4,1485)=992.91, p<0.0001] such
that the Expert category showed themost variance followed in
order by the Expert-Basic, Expert-Greeble, Basic, and Basic-
Greeble categories in order. There was also a main effect of
epoch [F(10,1485)=1216.73, p<0.0001], with the least variance
exhibited initiallywith variance significantly increasing across
training epochs. There was also a significant interaction of
category with epoch [F(40,1485)=43.51, p<0.0001].

To examine how this develops over time, we plot the
average variance of response of the hidden units across a class
over training in Fig. 8. As expected based on the PCA visuali-
zation, the greatest variability is to the category learned at the
subordinate level, and this variability of response extends to
the non-expert categories as well. That is, in expert networks,
there ismore variability of response to every stimulus category
than in networks that simply do basic-level categorization.
Furthermore, this variability in response extended to the
completely novel Greeble category. Note that Fig. 8 shows the
response to untrainedGreeble stimuli.WhenGreebles are then
trained, the variance of response to them then increases above
the levels shown in Fig. 8 (data not shown).

A post hoc right-tailed two-sample t-test was performed on
the final epoch to determine the significance of the final
ordering; all orderings were significant (p<0.00001, with n=40
or n=10 measures of mean variances for expert and basic
networks respectively) except for expert networks shownbasic
and Greeble stimuli (p=0.8840). All networks were initialized
withweights drawn from the same distribution and show only
the small differences in variance of responsedue to differences
in stimuli classes, so this result is due to the effects of training
with the pre-training stimulus prior to (and during) training
the novel stimulus. Finally (data not shown), becoming a
orm face area recruited for novel categories of expertise?
16/j.brainres.2007.06.079
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RGreeble expert increased variability in all networks. This
caused the originally basic-level networks to resemble the
other expert networks in that now their variability was higher
to all categories. Based on these results, the model predicts
that neurons involved in fine level discrimination, as is the
hypothesis concerning the FFA, will show greater variability
across stimuli that the subject possesses expertise in. This
variability of response will be greater than in areas outside the
FFA.

It is possible that these results are simply due to a scaling
difference between the two types of networks, if theweights in
a basic level network are simply smaller overall than in an
expert network. To control for this possible artifact, we
computed the variance of the object classes relative to the
variance between classes of the internal representation. We
find that the relative variance of the representation of
discriminated classes in expert networks is significantly
higher than in networks where these same stimuli are simply
being categorized. As the PCA visualization suggests, we find
Please cite this article as: Tong, M.H., et al., Why is the fusif
A neurocomputational investigation, Brain Res. (2007), doi:10.10
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that if we average together the variability of all classes
categorized at the basic level, and compute the ratio of this to
the between class variance (the variance of themeans), there is
still a significant difference (using a right-tailed paired t-test
with n=10, p<0.0001 for all pairings of expert to basic). This
demonstrates that the expert networks are unnecessarily
spreading out the classes they do not need to discriminate.
Finally, we find that objects that are novel to the network
(Greebles) also have a higher spread in expert networks (again
using a right-tailed paired t-test with n=10, p<0.0001 for all
pairings of expert to basic).

In the simulations discussed above, networks that learned
a subordinate level task, and therefore exhibited a high degree
of hidden unit variability, learned a secondary subordinate
level task faster than basic level networks that exhibit little
hidden unit variability. This suggests that the amount
variance a network exhibits in response to a category prior
to training on that category should be predictive of how fast
that network will learn to discriminate that category.

To test this hypothesis, we performed a regression on the
amount of variability of feature responses to Greebles prior to
Greeble training, versus the number of epochs it takes the
network to learn the Greeble task. There is a strong negative
linear correlation between these two variables (r=−0.6317,
p<0.0001), such that those networks exhibiting the lowest
variance also take the longest to learn the Greeble task (Fig. 9).

At this point the careful reader will have noticed that the
main effect of being an expert network is a higher variability of
response to stimuli from the categories of expertise, and then
wondered how this could possibly account for the increased
BOLD signal seen in fMRI experiments in the FFA for expertise
stimuli. One might assume we should be measuring increases
inmean firing rates, rather thanvariance.However,we suggest
that an increased variance in firing rates for neurons over a
class of stimuli should correlate with higher mean firing rate,
by the following argument: Biological neurons find encodings
of the world that tend to maximize sparsity in order to
minimize their firing rates while maintaining high levels of
discriminability. In the interests of simplicity, our model
contains no such bias for sparsity, and our artificial neurons
utilize their full range of firing rates with equal probability.
Furthermore, since both positive and negative weights are
allowed, the actual activation of a neuron says nothing about
its sensitivity to a particular type of stimuli; sensitivity is
instead displayed by changes in activation, which is related to
variance in sparse encodings. In the case of biological neurons
with base rates near zero, an increased firing rate will result in
a net increase in the variance. In particular, if the probability
density function of a neuron's firing rate r follows a steep
exponential distribution (one possiblemodel of sparse coding),
as in:

f ðr;kÞ ¼ ke�kr ðrz0Þ

then as the variance increases (given by λ−2), so does themean
(λ− 1). While our model's activations do not follow this
distribution, we argue that a more realistic model that did
use sparse coding would also show the same increase in
variance to stimuli of expertise. Indeed, it seems obvious now
orm face area recruited for novel categories of expertise?
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Fig. 6 – Visualization of the hidden unit representation. The figure shows the second and third principal components (the first
PC simply describes a growth in activation magnitude) of the hidden unit activation to images from the training set of two
types of networks, a face expert (top row) and a basic-level network (bottom row) over training time. Samples are taken at 0
epochs (column 1), 80 epochs (column 2), and 5120 epochs (column 3) of training on the first task. Colors correspond to different
object categories. Both networks separate the categories over training, but the face expert (top) also spreads out the
representations within each class, with the largest spread for the category learned at the subordinate level (faces). This
difference in representation corresponds to a difference in variability of response of the hidden units between the expert
networks and the basic networks: the farther apart each point is, the larger the difference in unit response. To demonstrate the
spread of the unseen, novel stimuli (shown in red), Greebles were presented to the networks and their hidden unit activations
were projected onto the principal components.
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that within-class variability in such a model directly corre-
sponds to having a different pattern of activation for different
stimuli, an essential component of the ability to discriminate.
Hence, while the goal of our model was to describe the
recruitment of the FFA to other domains of expertise due to
the FFA's relative fitness for such tasks compared with other
areas, our model also does show the kind of sensitivity to
domainsof expertise that correlatewith findings from the fMRI
literature. Amore literal correlation ofmean firing rates would
UN
CO

RR

Fig. 7 – Single unit recordings of randomly chosen units from th
network (right), showing the higher variability of the expert netw
one unit to 10 stimuli from five different categories.
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require several additional assumptions in our model that go
well beyond the scope of this paper.

A second concern may arise due to the fact that, at least in
the principal components plots of Fig. 6, it would appear that
the same dimensions that are sensitive to faces are also
sensitive to other stimuli. Is there really such an overlap in
representation in the FFA? Recent work by Grill-Spector et al.
(2006, 2007) suggests that there is. After localizing the FFA
using standard fMRI, high-resolution fMRI was used to
e hidden layer of an expert (face) network (left) and a basic
ork feature responses. Each histogram shows the response of

orm face area recruited for novel categories of expertise?
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measure the BOLD response from 1 mm2 voxels in the FFA.
These voxels were assessed for their selectivity to faces, cars,
animals, and abstract sculptures. In the original paper, it
appeared that voxels were highly selective for each of these
categories, but that face voxels were simply more numerous.
However, in response to critiques of the analysis technique
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Fig. 9 – Time to learnGreebles over Greeble pre-training activation
the Greeble stimuli increases, the training required to learn Gree
p<0.0001). This variance is taken before the networks are trained
representational space.
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(Baker et al., 2007; Simmons et al., 2007), a more accurate
assessment of sensitivity was applied. The result was that,
whilemost voxelsweremost selective for faces, theywere also
sensitive to other categories as well. While this does not prove
anything about individual neuron tuning, it does suggest that
the FFA is not just responsive to faces; it is a much more
T

variance. As the variance of the hidden layer activations over
bles decreases. This correlation is strong (r=−0.6317,
with Greebles and represents the initial spread of Greebles in

orm face area recruited for novel categories of expertise?
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heterogeneous area thanwas originally thought. This analysis
is also consistent with the idea that individual neurons may
respond to faces and other categories of stimuli, and hence is
consistentwithourmodel's suggestion thatminor re-tuning of
the neural responses in the FFA is sufficient to account for the
responses to new areas of expertise.

Finally, there is still a great deal of controversy whether
there is a “face area” at all. Work by Haxby and colleagues
(Haxby et al., 2001; Hanson et al., 2004) has shown that it is
possible to accurately classify the stimulus class being
observed by a subject using a standard machine learning
pattern classifier applied to several different regions of cortex,
that may or may not include the FFA. However, these
experiments do not address the foremost role that we
hypothesize for the FFA—fine level discrimination of homo-
geneous categories. It is not surprising that one can determine
at a basic level what is being observed from multiple brain
areas. Indeed, we would predict that from our model. What
has not been shown that one can determine who is being
observed from widely distributed brain activations. Thus,
these data are not inconsistent with the putative role of the
FFA as a fine level discrimination area.
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3. Conclusions

Several effects were observed in these simulations: (1) net-
works can become experts, by the behavioral definition of the
entry-level shift in reaction times; (2) expert networks learn the
Greeble expertise task faster than basic-level categorizers; (3)
this can be attributed to the spreadof representations in expert
networks: Greebles are more separated by these features than
by the basic-network features; and (4) this feature variability to
the Greeble category prior to training on it is predictive of the
ease with which it will be learned. The results imply some
specific hypotheses about phenomena that might be observ-
able in human and/or primate subjects. First, though, let us be
clear about what these results do not imply.We interpret these
results to be relevant to competing cortical areas, not to
different subjects learning different tasks. Thus, our results
should not be interpreted to mean that subjects that have just
learned a hard discrimination task should be more successful
at learning a new discrimination task than subjects who have
learned a simple discrimination task. Indeed, it is usually the
case that it takes longer to learn novel categories of visual
stimuli like these than it would if the network was starting
from initial randomweights. The point is rather that fine level
discrimination areas are better at learning new fine level
discriminations than simple object categorization areas.

What the results do suggest is that if the FFA is performing
fine-level discrimination, then that task requires it to develop
representations of the stimuli that separate them in repre-
sentational space—the neural responses are highly differen-
tiated. That is, similar objects have the differences between
them magnified by the expert networks. On the other hand,
networks that simply categorize objects map those objects
into small, localized regions in representation space (this is in
the space of neural firing patterns, and should not be confused
with spatially localized representations). The magnifying
transform of the expert networks generalizes to a novel
Please cite this article as: Tong, M.H., et al., Why is the fusif
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category, and this generalization leads to faster learning;
hence, the recruitment of the FFA for Greeble expertise. We
have suggested that the hidden layer of the expert networks of
our model corresponds roughly to the FFA based on the
equivalency of tasks and have shown that the nature of the
task is sufficient to cause the recruitment of the FFA based on
a shared need for fine-level discrimination; however, the
actual brain is of far greater complexity than our model, and
some of the changes observed in the hidden layer may turn
out to be distributed among several brain areas.

An advantage of using simulations is that wewere also able
to show that this expertise effect is not limited to face experts.
To put it in a somewhat fanciful way, the results suggest that if
our parents were cans, then the Fusiform Can Area would be
recruited for Greeble expertise. Furthermore, other simula-
tions show that this learning advantage is not limited to novel
Greeble expertise, nor is it dependent on the difference in the
number of distinctions the two networks are making (Tong
et al., 2005; Tran et al., 2004).

These simulations also make a prediction concerning the
physiological responses of FFA neurons. They predict that, at
the physiological level (perhaps using intracranial electrode
arrays), cells in the FFA should show more variability across
stimuli within a category than cells in other high-order visual
object areas, and that this variability would be particularly
high for categories for which the viewer possesses expertise
(e.g., human and/or monkey faces). This is a falsifiable
prediction of the model, and hence we look forward to our
model being put to the test.
TE4. Experimental procedures

4.1. Training and testing

Neural networks were trained on a subordinate level classifi-
cation task following various pre-training regimens. The
image preprocessing steps, network configurations, and
simulation procedures are described below.

The stimulus set consisted of 300 64×64 8-bit grayscale
images of human faces, books, cans, cups, and Greebles
(60 images per class, 5 images of 12 individuals, see Fig. 2).
The five images of each Greeble were created by randomly
moving theGreeble 1 pixel in the vertical/horizontal plane, and
rotating up to ±3° in the image plane. Pictures of objects were
taken under constant lighting and camera position, varying
object position slightly over different images. Pictures of faces
were frontal images of people making different facial expres-
sions while camera angle and lighting remained constant
(Cottrell and Metcalfe, 1991).

The images were preprocessed by applying Gabor wavelet
filters of five scales and eight orientations as a simplemodel of
complex cell responses in visual cortex, extracting the
magnitudes, and reducing dimensionality to 40 via principal
component analysis (PCA). We have found that the particular
number of principal components used does not make any
significant differences in our results for ranges from 30 to 50.
Greeble images were not used to generate the principal
components in order to model subjects' lack of experience
with this category.
orm face area recruited for novel categories of expertise?
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A standard feed-forward neural network architecture (40
input units, 60 hidden units) was used (see Fig. 1). The hidden
layer units used the standard logistic sigmoid function while
the outputs were linear. Networks were trained using back-
propagation of error with a learning rate of 0.01 and a
momentum of 0.5.

During pre-training, all networks were trained to perform
basic level categorization on all 4 non-Greeble categories. The
expert networks were additionally taught to perform subordi-
nate level categorization of one of the four categories. Non-
expert networks (basic level task only) had 4 output nodes
corresponding to book, can, cup, and face. Expert networks
(subordinate level task) had 14 outputs: 4 for the basic
categories and 1 for each of the 10 individuals (e.g., can1,
can2, ... can10, for a can expert). In phase 2, the pre-trained
networks learned subordinate level Greeble categorization
alongwith their original task. Eleven output nodeswere added:
1 for the basic level Greeble categorization and 1 for each
Greeble individual. The network then learned a 15-way (basic
network) or 25-way (expert network) classification task. All
networks were trained on the same 30 images (3 images of 10
individuals) per class during pre-training. Thus, any differ-
ences in representation are due to the task, not experience
with exemplars. To test for generalization, 29 images were
used (1 new image of each of the expert category individuals
(10+10), plus 3 images of new basic level exemplars per
category). All networks generalized well.

Ten networks, each with different random initial weights,
were trained on each of the 5 pre-training tasks (basic, face
expert, can expert, cup expert, book expert) for 5120 epochs.
Image sets were randomized. Intermediate weights of each
network were stored every 5⁎2n epochs, for n=1:10. Phase 2
training was performed at each of these points (“copying” the
network at that point) to observe the time course of expertise
effects. Training concludedwhen the RMSE of the Greebles fell
below 0.05. Thus, there were a total of 50 phase 2 networks on
which to perform the analyses.

4.2. Analysis

The linear trend analysis on the time to learn thenovel Greeble
identification task as a function of phase one training timewas
performed using an F-test on a least-squares linear regression
to test for non-zero slopes. For each of the five networks, there
were 10 points at each of the 10 sampled epochs, yielding
n=100. The time scale usedwas logarithmic. Although the data
were non-linear, this nevertheless quantified the trend of the
networks as they were exposed to additional training.

Reaction times of the networks were modeled as the
uncertainty of the appropriate output. Tat is, for the Greeble
basic versus Greeble subordinate comparison in Fig. 4b, we
used RT=1−activation, where activation refers to the Greeble
output unit for the basic RT, and activation refers to the output
corresponding to the ith Greeble for the subordinate RT. Both
of these are averaged over all 10 Greebles for one network
chosen at random for the graph in Fig. 2.

The principal components analysis of the hidden layer was
performed on a network by recording the hidden unit
activations for every training pattern at every point during
which weights were saved (the initialization and the 10 stages
Please cite this article as: Tong, M.H., et al., Why is the fusif
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of phase one training). The 60×60 covariance matrix of these
data was formed, and the eigenvectors computed. A randomly
chosen set of examples from each class at each time point
were then projected onto the second and third eigenvector
and plotted. A representative set of Greeble stimuli were also
presented to the network (without training them), and their
hidden unit vectors were projected into the subspace.

The variability plots were formed by computing the
variance of each of the 60 hidden unit activations over the
appropriate class of stimuli at different training epochs. Five
levels of category were of interest: Expert networks shown
stimuli from their domainof expertise, Expert networks shown
stimuli outside their domain of expertise (but trained at the
basic-level), Expert networks shown the untrained Greeble
stimuli, Basic networks shown stimuli from the trained basic
set, and Basic networks shown the untrained Greeble stimuli.
The variance of these was tracked over 11 time samples (the
variance of the randomly initialized networks and the ten
stages of training). The variance over the 60 hidden units was
then averaged for each of the 10 networks in a given category
and epoch. As therewere four categories of experts, therewere
40 samples for each epoch for the expert networks, while there
were only 10 for the basic networks, yielding a total of 1540
samples of average variance. To compensate for uneven cell
sizes, anANOVAusing type 3 sumof squareswas performed to
measure the effects of these 5 categories and 11 epochs. We
also computed the ratio of the average variabilitywithin a class
to the variability between classes, to measure the spread of
representations in the two types of networks, performing a two
sample t-test on the variance ratio after phase 1 training was
complete (n=40 for expert networks, n=10 for basic).
T
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